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Navigating conflict is integral to decision-making, serving a central
role both in the subjective experience of choice as well as contem-
porary theories of how we choose. However, the lack of a sensi-
tive, accessible, and interpretable metric of conflict has led
researchers to focus on choice itself rather than how individuals
arrive at that choice. Using mouse-tracking—continuously sam-
pling computer mouse location as participants decide—we dem-
onstrate the theoretical and practical uses of dynamic assessments
of choice from decision onset through conclusion. Specifically, we
use mouse tracking to index conflict, quantified by the relative
directness to the chosen option, in a domain for which conflict is
integral: decisions involving risk. In deciding whether to accept
risk, decision makers must integrate gains, losses, status quos,
and outcome probabilities, a process that inevitably involves con-
flict. Across three preregistered studies, we tracked participants’
motor movements while they decided whether to accept or reject
gambles. Our results show that 1) mouse-tracking metrics of con-
flict sensitively detect differences in the subjective value of risky
versus certain options; 2) these metrics of conflict strongly predict
participants’ risk preferences (loss aversion and decreasing mar-
ginal utility), even on a single-trial level; 3) these mouse-tracking
metrics outperform participants’ reaction times in predicting risk
preferences; and 4) manipulating risk preferences via a broad ver-
sus narrow bracketing manipulation influences conflict as indexed
by mouse tracking. Together, these results highlight the impor-
tance of measuring conflict during risky choice and demonstrate
the usefulness of mouse tracking as a tool to do so.

prospect theory | mouse tracking | dynamic processes | risk |
decision-making

“The experience of conflict is the price one pays for the freedom to
choose.”—Tversky & Shafir, 1992.

Decision-making requires navigating the conflict that arises
when choosing between alternatives (1–6). Understanding

the processes by which we encounter, experience, and resolve
such conflict is therefore a principal goal of decision-making
research. Despite this, the focus in decision research is typi-
cally on just the end-point of the choice process—the choice
itself—rather than the decision process. A major reason for this
is the lack of accessible and scalable tools for dynamic mea-
surement, with existing dynamic measures, such as electroen-
cephalography/functional MRI, eye tracking, and reaction time
(RT), requiring high resource (and time) investments and/or
complex modeling. In the present paper, we propose that mea-
suring computer mouse movements as participants make a
choice—i.e., mouse tracking (7–12)—provides a dynamic, ac-
cessible, scalable, and sensitive technique for quantifying conflict
during choices. In what follows, we first discuss conflict, then
propose the advantages of mouse tracking for studying conflict,
both in general as well as why it is particularly relevant for the
study of decisions involving risk.

Conflict
Choice is a dynamic process: over the time course of a decision,
our representations are rapidly evolving and changing (e.g., ref.
13), as are our weighting of options (14) and dimensions (e.g.,
reward vs. likelihood; refs. 15–17); these combine with inherent
stochasticity in the firing rates of neurons that encode this in-
formation (18) to produce a (sometimes noisy) signal toward or
away from one option. While many factors likely influence the
strength, consistency, and overall distribution of these signals
(e.g., the clarity and complexity of choices offered), we focus on
the mean of the distribution, which depends on the difference in
subjective value between the two options. Sometimes, one option
will clearly dominate the other, resulting in a series of strong,
consistent signals toward the dominant option throughout the
time course of the decision. This manifests as a relatively easy
choice, and one we define as having relatively lower conflict.
Oftentimes, however, no option is clearly dominant, and, as the
representations and weightings shift, the signals will be less
strong and less consistent (i.e., they may point toward different
options). This manifests as a difficult choice, and one we define
as having relatively greater conflict. We thus define conflict as
the lack of strength and consistency of the signals toward one
option over another.
In formulating this definition of conflict, we draw on se-

quential sampling models (such as the drift diffusion model; refs.
19–21), which provide a modeling framework to quantify the
integration of these signals. These models assume that, through-
out the time course of a decision, individuals noisily accumulate
and compare evidence (i.e., the signals discussed above) in favor
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of each option until the evidence favoring an option reaches a
predetermined threshold (Fig. 1A). Within this framework,
conflict can be defined as the inverse of the rate of relative
evidence accumulation (drift rate) toward the chosen option.
Past work has used modeling to extract this conflict compo-

nent from RTs, a necessary step since many factors contribute to
RTs beyond solely conflict. Some of these factors occur outside
of the comparison process and contribute to what is known as
“nondecision time” (22, 23). The two most frequently discussed
contributors to nondecision time are initial orienting/encoding
(e.g., perceptual representation, reading, retrieval from memory)
and motor latency (the time it takes to execute and complete a
keypress). Past work has shown that these can account for 30 to
80% of the RT (24, 25). For example, you might encounter an easy
decision during a lapse in attention or hesitate before making the
button press, leading to a misleadingly long RT. Here, we argue
that it may be more fruitful to study conflict by using motor indi-
cators (which may be less influenced by nondecision processes) to
assess the strength and consistency of the evidence accumulation
process in real time. In particular, we use computer mouse tracking

as a reflection of the evidence accumulation process, with less di-
rect, consistent, mouse movements reflecting increased conflict.

Mouse Tracking
Built off cognitive models that propose a dynamic interplay be-
tween motor movements and underlying cognition (9, 26), mouse
tracking provides a dynamic, millisecond-level window into how
a decision unfolds. The data richness of mouse tracking allows
for many complementary analysis approaches (11, 27), but one of
the most powerful (and most commonly used) approaches is
using these trajectories to gauge response conflict between two
options by quantifying the directness (or lack thereof) of the
mouse from choice onset to choice conclusion. The logic is that,
when the chosen option clearly dominates the unchosen option,
the mouse trajectory should be attracted toward the chosen
option and unattracted toward the unchosen option, manifesting
as a relatively straight trajectory. As the unchosen option
becomes relatively more attractive, however, the cursor move-
ment should be relatively more attracted to that option, mani-
festing as a less direct trajectory toward the chosen option.
More precisely, we assume that mouse movements reflect a

smoothed version of the relative accumulated evidence (16).
Specifically, we believe mouse movements are the result of two
forces. First, as participants are instructed to begin moving their
mouse as soon as the choices appear on the screen, there is a
default vertical force upward. This combines with a horizontal
force leftward or rightward proportional to the rate of evidence
accumulation. The two forces combine to create either relatively
direct or indirect trajectories (Fig. 1B). This directness is quan-
tified by taking the area between the actual trajectory and a
straight trajectory, and is referred to as the area under the curve*
(AUC). An extensive body of research, primarily in the categori-
zation literature, suggests that trajectory directness is reflective of
response conflict (reviewed in ref. 7). For instance, there is greater
conflict when categorizing atypical (e.g., “whale”) compared with
typical (e.g., “cat”) exemplars as fish versus mammals (28).
As noted above, many dynamic methods exist (e.g., neural

measures, eye tracking, and RT), but we believe mouse tracking
offers three primary advantages for the study of conflict. First, it
provides a face-valid, readily interpretable dynamic assessment
of choice. Second, it is easily accessible to researchers and
practitioners alike, requiring no expensive equipment or exten-
sive training to use. Third, the approach of measuring cursor
movements is scalable beyond the lab, allowing researchers to
covertly assess conflict outside of the laboratory (29).
One outstanding question, however, is the relative sensitivity

of mouse tracking: whether it can detect subtle contextual dif-
ferences, as well as how it compares with other measures, most
notably RT. In other words, the specific advantages of using
mouse tracking over RT to study conflict have not been fully
documented. One reason to believe AUC could outperform RT
is that AUC may be less influenced by nondecision processes,
since initial encoding and motor latencies should have relatively
less impact on mouse trajectories compared to RT (for instance,
while a delay in clicking the mouse at the end of the trajectory
will influence RT, it should not greatly influence AUC). In the
present paper, we show both high sensitivity of mouse tracking to
details of the choice problems, and that the information gleaned
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Fig. 1. Schematic of the relationship between a latent drift diffusion model
decision process and its physical manifestation in mouse movements. (A) The
drift diffusion model assumes that, over the course of a decision, the indi-
vidual accumulates relative evidence in support of one option or another
(purple and green lines) until the accumulated evidence reaches a pre-
defined choice threshold (dashed lines at top and bottom), at which point
the individual makes that choice. Here, we give two examples, one where
the evidence strongly and consistently points toward the leftward option
(low conflict, green line) and one where the signal weakly and inconsistently
points toward the rightward option (high conflict, purple line), with the drift
rate (i.e., the average slope) represented by the arrows of the corresponding
color. (B) With mouse tracking, the strength and consistency of evidence
toward one option over the other should manifest in motor movements that
reflect the evidence accumulation process. The arrows at the top represent
the relative strength of evidence toward the option (with size and length
proportional to the corresponding drift rate in A). To quantify conflict, we
take the AUC, which compares the area of the actual mouse trajectory
(colored lines) to a straight trajectory (dashed black lines), shown here as the
shaded region between the trajectories (Fig. 2).

*Here, our theoretical framework motivates our choice to use AUC rather than other
metrics such as the maximum deviation (the furthest point from a straight trajectory)
or x-flips (the number of horizontal reversals). Specifically, sequential sampling models
posit that evidence accumulation is a noisy, random walk, and so metrics that account
for the entire trajectory, such as AUC, should outperform metrics such as maximum
deviation (which focuses on only a single point) or x-flips (which only capture changes
in direction and not different-sized steps in the same direction). In other words, AUC is
better able to integrate and reflect the entirety of the evidence accumulation process.
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in this way is more reflective of the underlying cognitive pro-
cesses than RT.

Decisions Involving Risk
Notably, despite the critical role of conflict in decision-making,
mouse tracking has so far been used only sparingly in decision
research (11), with most of the research focused on self-control
(30–35; but see refs. 36–41). One class of decisions for which
conflict is a central component, and for which mouse tracking
may be particularly informative, are choices involving risk:
choices that pit an outcome that is certain against an outcome
that may turn out better or worse. Such choices typically gen-
erate conflict because they force individuals to assess whether
the possibility of the better outcome is worth the possibility of
the worse outcome.
The prevalence and importance of decisions involving risk has

led to a comprehensive understanding of when individuals will
select risky over certain options (i.e., risk preferences). For in-
stance, this research has demonstrated that individuals are gen-
erally (though not always) loss-averse (42–45): losses are
disproportionately avoided compared with equivalent gains,
which is one of the factors leading to risk aversion in decisions
with both positive and negative outcomes (i.e., outcomes that
cross the reference point of 0). Furthermore, individuals tend to
display decreasing marginal utility (42, 46–49); for example,
people value $10 less than twice as much as they value $5,
making them risk averse for decisions involving positive out-
comes (i.e., outcomes that are greater than or equal to the ref-
erence point of 0).
Despite much philosophizing about the reasons for risk-averse

and loss-averse behavior, relatively less research has focused on
how people arrive at those choices [for notable recent excep-
tions, see refs. (50–52)]. The standard approach reduces a con-
tinuous and dynamic decision process into a static and binary
choice outcome (important though that outcome may be) and, in
doing so, ignores potentially useful information. To illustrate,
consider one individual who selects a risky option without much
difficulty and another individual who wrestles with the same
decision before ultimately selecting the risky option. In this ex-
ample, the choice outcomes are identical, but the choice process
identifies the first individual as being more risk-seeking than the
second. Dynamic assessments of conflict may thus provide a
much more useful window into the underlying subjective valua-
tions, highlighting the diagnosticity of a given choice process for
one’s latent risk preferences.
In the present research, we use mouse tracking to quantify

conflict in risky choice with four specific goals. First, we aim to
show that mouse tracking serves as a highly sensitive metric of

conflict, detecting subtle differences in changes to the choice
context. Choices under risk are an ideal domain to test the
sensitivity of mouse tracking, as changes in the relative values of
gains, losses, and certain outcomes have well-understood influ-
ences on how individuals subjectively value these gambles. Spe-
cifically, we investigate whether choices with more similar
subjective values produce greater AUC (even when controlling
for RT). Second, we aim to show the utility of tapping into dy-
namic, continuous metrics of conflict over and above binary
choice data to understand how people resolve choices between
certain and uncertain options. In particular, we investigate how
well mouse tracking predicts risk preferences—prospect-theory
parameters of loss aversion and diminishing marginal utility—
even when choice is kept constant, as well as predicting choices
out of sample. Third, we aim to show the relative strength of
mouse tracking over RT. Finally, we investigate whether a typical
manipulation of loss aversion (via framing effects) indeed
changes mouse-tracking metrics in line with expected shifts in
risk preferences.
In summary, we demonstrate the theoretical and practical uses

of dynamic assessments of choice from onset of the decision
through to the conclusion (i.e., the choice) in decisions for which
conflict is integral: decisions involving risk. Specifically, we show
that motor indicators of conflict are highly sensitive to differences
in subjective value of the choices, are more predictive of risk
preferences than RTs, and offer diagnostic information about
future choices above and beyond that offered by choice alone.

Results
Across three preregistered studies (n = 148, 105, and 399), we
measured participants’ mouse movements as they made 215 se-
quential decisions of whether to accept or reject 50/50 gambles
(Fig. 2). Gambles were adapted from Sokol-Hessner and col-
leagues (53) (SI Appendix includes a complete list) and consisted
of two types: mixed gambles offered a 50/50 gamble that resulted
in either gaining or losing money (e.g., 50% of gaining $x, 50%
chance of losing $y) versus a certain option that was always equal
to $0. Gain-only gambles offered a certain gain (e.g., $z) against
a 50/50 gamble of either a larger gain (e.g., $x) or $0. Each trial
started with participants’ mouse cursors at the bottom center of
the screen, after which the gamble information would appear just
above the cursor. Participants then moved their mouse to one of
two buttons in the top left and top right corners of the screen
that corresponded to rejecting and accepting the gamble. Study 3
further manipulated risk preferences (between participants) via a
narrow versus broad bracketing manipulation (53, 54), as de-
scribed in greater detail below.

START

GAMBLE

50%: GAIN $5
50%: LOSE $3

50%: GAIN $5
50%: LOSE $3

START

50% chance: $10
OR

Certain: $5

50% chance: $10
OR

Certain: $5

Mixed Gambles

Gain-Only Gambles

PASS GAMBLE

Analysis
Area under the curve (AUC)

PASS

CERTAIN GAMBLE CERTAIN GAMBLE CERTAIN GAMBLE

GAMBLEPASS GAMBLEPASS

Fig. 2. Schematic of mouse-tracker procedure (Left) and analysis (Right). (Left) Procedure: each trial proceeded as follows. First, participants would click a
start button (Left), after which the details of the gamble would be displayed (Center) and participants would move their mouse to either accept or pass on the
gamble (Right). Procedure is shown for both mixed gambles (Top) and gain-only gambles (Bottom). (Right) Analysis: to quantify conflict, we take the area
between the actual mouse trajectory and a straight trajectory, a metric known as the AUC.
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We first calculated participants’ prospect theory parameters
for loss aversion (λ) and diminishing marginal utility (ρ) via a
hierarchical Bayesian framework (55). These parameters serve as
stable metrics of participants’ risk preferences, with higher λ
corresponding to greater risk aversion in mixed gambles and
lower ρ corresponding to greater risk aversion in gain-only
gambles. It is important to acknowledge that ρ also influences
risk preferences in the mixed trials. However, past research with
similar paradigms has indicated that λ varies substantially more
than ρ, so, for the bulk of our analyses, we focus on λ within the
mixed trials and ρ within the gain-only trials.
These parameters also allow us to calculate the subjective

value (u) of both the certain and uncertain outcome via the
following utility function:

u x( ) = { xρ, x>0
−λ · −x( )ρ, x ≤ 0 [1]

u(gamble) = (1
2
· u(gain)) + (1

2
· u(loss)) [2]

Subjective Value and Conflict. We predicted that, the closer the
subjective values of the gamble and certain options (i.e.,
accepting or rejecting the gamble), the greater conflict there
would be, as indicated by AUC. To test this, for each trial, we
calculated the subjective value of both the gamble and the cer-
tain outcome using Eqs. 1 and 2. We then computed the absolute
difference between these subjective values. We then used full
mixed-effects models (implemented via the lme4 package in R)
to predict trial-by-trial AUC from this difference in subjective
value.†

Consistent with our hypotheses, in all three studies, we find a
significant effect such that larger differences in subjective value
corresponded to less conflict, i.e., lower AUC: study 1, b = −0.03,
SE = 0.008, t(61.04) = −4.05, P < 0.001; study 2, b = −0.07, SE =
0.01, t(48.69) = −6.57, P < 0.001; study 3 (collapsing across
conditions), b = −0.07, SE = 0.005, t(217.61) = −12.82, P <
0.001. Not only is this effect significant, but it appears that mouse
tracking is highly sensitive to within-subject variation in subjective
value (Fig. 3).
We next sought to investigate whether mouse tracking provides

information that is distinct from that of RT. Indeed, the
present results hold even when controlling for (raw) RT: study
1, b = −0.02, SE = 0.006, t(57.98) = −3.30, P = 0.002; study 2,
b = −0.04, SE = 0.006, t(33.97) = −5.82, P < 0.001; study 3,
b = −0.04, SE = 0.004, t(173.44) = −9.34, P < 0.001. This
indicates that mouse movements provide information that is
nonredundant with RT. This result is unchanged when using
log-transformed RT instead: study 1, b = −0.02, SE = 0.006,
t(56.84) = −3.65, P < 0.001; study 2, b = −0.04, SE = 0.006,
t(33.09) = −6.04, P < 0.001; study 3, b = −0.03, SE = 0.003,
t(159.72) = −9.19, P < 0.001.
To further document the ability of mouse tracking to sensi-

tively detect differences in conflict, we sought to demonstrate
that mouse movements were responsive to even subtle differ-
ences in subjective value. To this end, we divided our data into
quintiles based on the subjective value difference of the gambles,
such that quintile 1 corresponded to the 20% of trials that had
the smallest difference in subjective value. We then tested
whether mouse tracking could detect 1) differences in conflict
within the quintile and 2) differences in conflict between the
quintiles. As the former reduces our sample size by an order of

five and the latter converts our continuous predictor to a di-
chotomous predictor, we pool data from across all studies (for
individual analyses of each study, which were highly consistent
but not as uniformly significant, are available in SI Appendix).
Within each quintile, AUC remained significantly negatively
related to the difference in subjective value (all Ps < 0.002; de-
tailed statistics are available in SI Appendix). AUC could further
distinguish between each quintile, with quintiles with smaller
differences between subjective values having significantly larger
AUC (Ps < 0.001; SI Appendix, Fig. S3). The implications of
these results are twofold: first, they suggest that conflict is not a
dichotomy (i.e., easy versus hard trials), but rather constitutes a
continuum. Second, mouse tracking appears to be able to sen-
sitively measure this conflict, with AUC able to detect even
subtle differences in the options.

Predictive Strength of Conflict. The preceding analyses suggest that
mouse tracking reflects the dynamic choice process, sensitively
revealing conflict within choice. Although this suggests that
mouse tracking may be a useful tool for measuring conflict, its
predictive value remains unclear. In particular, we have argued
that mouse tracking provides diagnostic information above and
beyond that of choice and RT. Such predictive power is partic-
ularly important for applied or field settings, where researchers
and practitioners often have access only to a limited choice set or
even a single decision. We thus tested whether conflict, as
indexed by AUC, would be predictive of participants’ risk pref-
erences, even when measured from a single trial where everyone
makes the same choice (SI Appendix further reports analyses
demonstrating that AUC can be used to predict subsequent
choices out of sample). This represents a strict test of our hy-
potheses: individual trials are noisy, but, if they can significantly
predict loss aversion or risk aversion, that would suggest that
mouse tracking is particularly sensitive to and predictive of risk
preferences, even when choice is held constant.
Specifically, if a participant shows little conflict when selecting

the risky option, that suggests less risk aversion relative to
someone who is highly conflicted when making the same choice.
Similarly, someone who is unconflicted when selecting a certain
outcome is likely more risk-averse than someone who is con-
flicted. In the mixed gambles, we therefore hypothesized that
conflict when accepting gambles, and a lack of conflict when
rejecting gambles, should predict greater loss aversion (higher
values of λ). For the gain-only gambles, we hypothesized that
conflict when accepting gambles, as well as a lack of conflict
when rejecting gambles, should predict decreased marginal
sensitivity for rewards (lower values of ρ).
To test the predictive power of mouse tracking, we first se-

lected two mixed gambles and two gain-only gambles from each
study in which there was low variance in choice—one gamble
overwhelmingly accepted, the other overwhelmingly rejected—
but high variance in AUC. We selected the following gambles:
mixed, +$12/−$4.5 (study 1, 91% accepting), +$10/−$20 (study
1, 4% accepting), +$10/−$2 (studies 2 and 3, 91% and 94%
accepting), +$8/−$10 (studies 2 and 3, 4% and 10% accepting);
and gain-only, gain $4, certain $1 (studies 1 to 3, 78%, 74%, and
83% accepting, respectively), and gain $3, certain $2 (studies 1 to
3, 35%, 37%, and 28% accepting, respectively). We then cor-
related λ (mixed gambles) or ρ (gain-only gambles) with AUC
from each trial, excluding the participants who did not select the
majority option. Each of these single-trial analyses produced
significant correlations such that risk preferences were signifi-
cantly predicted by conflict. Specifically, for the mixed gambles
that were overwhelmingly accepted, greater conflict was associ-
ated with greater loss aversion: rs = 0.21 (P = 0.01), 0.48 (P <
0.001), and 0.30 (P < 0.001) for studies 1 to 3, respectively. For
the mixed gambles that were rejected, conflict was associated
with lower loss aversion: rs = −0.24 (P = 0.003), −0.25 (P = 0.01),

†With one exception, noted later, we use this modeling approach for all trial-by-trial data.
Our results hold if we instead use fixed-slope, variable-intercept models.
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and −0.27 (P < 0.001). For the gain-only gambles that were accepted,
conflict was associated with decreased ρ (i.e., greater decreasing
marginal utility): rs = −0.26 (P = 0.006), −0.36 (P = 0.002),
and −0.36 (P < 0.001). Similarly, for the gain-only gambles that
were rejected, conflict was associated with increased ρ (lower de-
creasing marginal utility): rs = 0.50, 0.42, and 0.41 (all Ps < 0.001).

Performance Across All Trials. As our choices of which individual
trials to select were somewhat arbitrary (and not preregistered),
we next investigated single-trial performance for every individual
trial. For each trial, we first divided participants based on their
choice (accept versus reject). Pooling data across our three
studies, we then ran separate correlation analyses for those that
rejected versus accepted, predicting λ (mixed gambles) or ρ
(gain-only gambles) from AUC on that specific trial. Each
analysis was only run if there were at least 30 participants making
that selection; of 652 different trials, we had an adequate sample
for 540 (83%). Of these 540 trials, 407 (75%) produced signifi-
cant differentiation in λ or ρ (Fig. 4 and SI Appendix, Tables S7
and S8). Specifically, in the mixed gambles, conflict significantly
correlated with λ in 307 of 440 trials (70% of analyses run), and,
in the gain-only gambles, conflict significantly predicted ρ in
every trial (Ps < 0.006).
These results provide strong support that conflict indexed by

AUC can be highly informative of the underlying decision pro-
cesses contributing to choice, and contains highly diagnostic in-
formation even when choice itself is kept constant. These results
are particularly notable given that single-trial prediction on any
indirect measure is challenging due to noise in behavior, which
speaks further to the usefulness of mouse tracking.

Comparing Mouse Tracking with RT. The above analyses afford an
opportunity to address a remaining question: the relative strength
of mouse tracking compared with RT as a measure of conflict. To
this end, we conduct two related analyses: first, we predicted
risk preferences from single-trial AUC and RT, controlling for
one another. Second, we compared the predictive power

(i.e., correlation strength) of single-trial AUC to that of single-
trial RT.
When predicting risk preferences simultaneously from AUC

and RT, of the 407 trials for which AUC significantly predicted λ
or ρ, only 32 trials became nonsignificant when controlling for
RT (69% of all analyses were significant; 100 of 100 gain-only
trials and 275 of 440 mixed trials). Reaction time, however,
dropped from 338 trials (63%) significantly correlating with λ or
ρ to 218 trials (40%, 81 of 100 gain-only trials and 137 of 440
mixed trials) when controlling for AUC.
Second, when comparing the strength of correlation, AUC

outperforms RT by an average of 0.08 [AUC mean absolute r =
0.25, RT mean absolute r = 0.17, t(539) = −18.27, P < 0.001],
indicating that AUC provides greater predictive power than RT.
This advantage appears to be strongest for predicting λ [AUC
mean absolute r = 0.23, RT mean absolute r = 0.14, t(439) =
17.07, P < 0.001], even though it still was prominent for pre-
dicting ρ [AUC mean absolute r = 0.33, RT mean absolute r =
0.28, t(99) = 7.61, P < 0.001]. Together, these results indicate
that mouse tracking is more reflective of risk preferences than
RT in our experiments.

Bootstrap Analysis. The preceding analyses suggest that, on a
single-trial basis, AUC outperforms RT. We next investigated
how AUC compares with RT when applied to larger datasets—in
other words, do the benefits of mouse tracking persist when
adding additional trials? To test this, we conducted a bootstrap
analysis in which we compared the predictive accuracy of AUC
vs. RT for λ and ρ when averaging across the measures in N
randomly sampled trials.
For each trial,‡ we ordered participants according to their

choice and AUC. Specifically, we first selected participants who

ChosenUnchosen

Start

Difference in
subjective

value (Decile)
Most Similar

Most Dissimilar

Fig. 3. Average trajectories as a function of the difference in subjective value of the two options. To create this figure, we first calculate, for each participant, the
difference in subjective value of each of the 215 gambles. For each participant, we then bin these gambles into 10 deciles corresponding to the difference in subjective
value. We then, across participants and across studies, average together the trajectories in a given decile and plot the resultant average trajectories above. For in-
stance, the red line corresponds to the average trajectory of the trials for which the difference in subjective value is in the bottom 10% (i.e., most similar).

‡For the mixed gambles, studies 2 and 3 contained different gambles than study 1. As
such, we report here analyses of the mixed gambles separately for 1) study 1 and 2)
studies 2 and 3 (pooled). As all gain-only gambles were identical, we present the data for
gain-only gambles pooled across all three studies.
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chose to reject the gamble, then ordered them based on (in-
creasing) AUC scores, such that the person with the lowest rank
was the individual who rejected the gamble with the most direct
trajectory (i.e., lowest AUC score) and the person with the
highest rank was the individual who rejected the gamble with the
least direct trajectory (i.e., highest AUC score). We then
appended to this ranking the participants who accepted the
gamble, sorted based on descending AUC scores, such that the
lowest-ranked individual accepted the gamble with the least di-
rect trajectory and the highest-ranked individual accepted the
gamble with the most direct trajectory. This provides a ranking of
participants for each trial, with those who chose without conflict
at the ends of the spectrum and those with the most conflict in
the middle. Finally, we divided these rankings by the number of
participants in each trial to make comparisons across trials
(which varied slightly in the number of participants due to outlier
screening). We then replicated this process with RT rather than
AUC, ordering from fastest to slowest for rejected gambles and
then slowest to fastest for accepted gambles (we note that this
ordering, from rejecting to accepting, is arbitrary).

We then selected N trials at random (with replacement), av-
eraged participants’ normalized rankings (separately for RT and
AUC) across these N trials, and then correlated these average
rankings with participants’ rank-order λ and ρ. These correla-
tions were negative for λ and positive for ρ (because higher λ will
make people more hesitant to accept, but higher ρ will make
them less hesitant to accept), but, to ease interpretation and
comparisons of AUC and RT across λ and ρ, we multiplied all λ
correlations by −1, yielding positive correlations. For each value
of N, we repeated this process 10,000 times and used the
resulting distribution to provide point estimates and 95% CIs
(Fig. 5 and SI Appendix, Fig. S8).
First, we replicate the above single-trial analysis, showing that

AUC outperforms RT on a single trial (n = 1), though, as before,
this effect was more dramatic for predicting λ than ρ (a pattern
which was consistent for all bootstrap analyses). Second, when
predicting λ, the point estimates for AUC consistently outper-
form those for RT, with AUC above RT for over 50 trials. Third,
AUC appears to approach its asymptotes quicker than RT (when
predicting λ), meaning that, for smaller datasets, each additional
trial provides greater predictive power for AUC compared to
RT. Finally, AUC provides a significantly narrower CI than RT
across trials: paired-samples t tests, study 1, λ, t(164) = 36.56, P <
0.001; studies 2 and 3, λ, t(164) = 19.91, P < 0.001; and studies 1
and 3, ρ, t(49) = 7.06, P < 0.001. For predicting λ, this effect was
particularly notable, with the CIs for AUC roughly half the size
of those for RT (study 1, average AUC CI spread = 0.07, average
RT CI spread = 0.15; studies 2 and 3, average AUC CI spread =
0.05, average RT CI spread = 0.09).
To provide context for these analyses, we can investigate the

relative performance for AUC and RT at different numbers of
trials, as well as how many trials it takes to reach some threshold.
If we select n = 3 trials at random, we recover an average cross-
subject correlation between AUC and λ of r = 0.60, 95% CI =
0.44 to 0.74 for study 1 and r = 0.68, 95% CI = 0.55 to 0.79 for
studies 2 and 3, providing both a stronger correlation and a
narrower CI compared to the correlation between RT and λ: r =
0.49, 95% CI = 0.25 to 0.70 for study 1 and r = 0.60, 95% CI =
0.40 to 0.76 for studies 2 and 3. At n = 10 trials, we recover an
average cross-subject correlation between AUC and λ of r = 0.74,
95% CI = 0.65 to 0.81 for study 1 and r = 0.81, 95% CI = 0.74 to
0.86 for studies 2 and 3, again outperforming the correlation
between RT and λ: r = 0.67, 95% CI = 0.48 to 0.79 for study 1
and r = 0.77, 95% CI = 0.63 to 0.84 for studies 2 and 3. We can
further interrogate how many trials is required to get a correla-
tion with λ of at least 0.75 (i.e., the lower bound of the CI ex-
ceeds 0.75). For AUC, it takes 33 trials (study 1) and 11 trials
(studies 2 and 3), compared to RT, which takes 126 trials (study
1) and 25 trials (studies 2 and 3).§ Together, these analyses
demonstrate both the robustness of AUC estimates of risk
preferences, as well as their relative performance to RTs.

Manipulating Preferences. Our previous analyses relied on corre-
lational evidence: measured valuation corresponded to AUC. In
our final study, we set out to show that AUC is responsive to
manipulations of preferences (rather than solely measured
preferences). This constitutes an important, stricter test of our
hypotheses, allowing us to causally demonstrate the effect of
valuation on conflict. To this end, in study 3, participants were
instructed to use broad (“think like a trader”) versus narrow
(“consider only this single choice”) bracketing. In the narrow
bracketing condition, participants were asked to consider each
gamble independently, “in complete isolation from all other
decisions,” which past work has found enhances the relatively
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Fig. 4. Predicting loss aversion (mixed gambles, top) and risk aversion
(gain-only gambles, bottom) from conflict (indexed via AUC) on individual
trials, pooled across studies. Each point plus error bars corresponds to the
correlation plus 95% CI between λ and conflict, or risk aversion (1 − ρ) and
conflict on a single trial, with significant analyses colored black and non-
significant analyses colored gray. Analyses were run separately for those that
accepted the gamble (Left) and those that rejected the gamble (Right).
Values significantly greater than 0 correspond to a positive relationship
between conflict and loss/risk aversion, whereas values significantly less than
0 correspond to a negative relationship between conflict and loss/risk
aversion. Analyses that did not have at least n = 30 are omitted. Specific
breakdowns are given in the SI Appendix.

§We suspect the discrepancies between study 1 and studies 2 and 3 are likely due to
differences in sample size; whereas study 1 had n = 148, studies 2 and 3 had n = 504.
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acute negative emotions evoked by the prospect of a loss and
thus leads to greater loss aversion (53). The broad-bracketing
condition asks participants to consider each gamble as one of a
series of similar decisions and to “imagine yourself as a trader,”
which past work has similarly found to reduce emotions associ-
ated with losses, leading to reduced loss aversion (53). If broad
bracketing causes subjects to be willing to take on more risk, we
should observe less conflict when accepting a gamble and more
conflict when rejecting a gamble.
We first replicated the analyses reported in Sokol-Hessner and

colleagues (53): broad (vs. narrow) bracketing led to lower loss
aversion, b = −0.092, SE = 0.045, t(397) = −2.05, P = 0.04 (this
effect was somewhat weaker than in their study, likely due in part
to the between-subjects nature of our manipulation). Consistent
with our predictions, we found a significant interaction{ between
our manipulation (broad vs. narrow) and participants’ choices
(accept vs. reject) on conflict (estimated at the trial level using a
fixed-slope variable intercept model): b = −0.10, SE = 0.02,
t(8321) = −6.16, P < 0.001, such that broad (compared with
narrow) bracketing led to greater conflict when participants
elected to pass on the gamble, but less conflict when participants
accepted the gamble (Fig. 6).

General Discussion
Conflict is integral to both the subjective experience of choice
and contemporary theoretical understanding of decision-making.
In deciding whether to accept risk, decision makers must integrate
gains, losses, reference points, and outcome probabilities in
order to reach a decision, a process for which conflict is often
inevitable. However, the lack of compelling, accessible, and
interpretable metrics has limited research on conflict, with re-
searchers largely focusing on choice outcomes rather than how

Fig. 5. Bootstrap results showing the correlation between λ and average AUC rank (red) or average RT rank (black) in study 1 (A) and studies 2 and 3 (B) as a
function of the number of trials included to generate the ranking. Red and black ribbons represent the 95% CIs for AUC and RT, respectively. (Insets) Enlarged
views of the first 25 trials. AUC consistently outperforms RT (red points are higher than black points, particularly for smaller N) and provided a narrower CI
(red ribbon is approximately half the size as the black ribbon), indicating AUC provides a more accurate and precise measure of loss aversion.

0.70

0.75

0.80

0.85

0.90

Accept Reject

AU
C Condition

Broad
Narrow

Fig. 6. AUC as a function of choice (reject vs. accept) and condition (broad
vs. narrow). Higher numbers correspond to greater conflict. Under broad
bracketing, there was more conflict when rejecting gambles and less conflict
when accepting gambles. Error bars correspond to SEs.

{This analysis did not converge when using variable slope models, and as such we report
here the results of the fixed-slope variable intercept model. To address possible concerns
of inflated degrees of freedom in this test, we also conducted this model instead using
clustered SEs which produced a consistent (though marginally significant) interaction,
b = −0.14, SE = 0.08, t(8321) = −6.16, P < 0.001, t = −1.81, P = 0.07.
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participants arrived at those choices. Across three studies, we
have shown that mouse tracking can precisely quantify conflict,
and we have demonstrated the central importance and subse-
quent predictive power, above and beyond RT, of mouse-
tracking data within risky choices.
We first demonstrated that mouse tracking is a highly sensitive

metric for choice conflict in decisions under risk, showing that
motor movements are extremely responsive to the choice op-
tions. That is, the more similar the subjective values of accepting
versus rejecting a gamble, the less direct participants’ trajectories
were to the chosen option, even when controlling for RT. Mouse
tracking was further able to detect differences in gradations, with
AUC able to differentiate conflict both within and between
quintiles of the difference in subjective value. These results also
are consistent with our theoretical framework, which argues that
conflict is a continuous phenomenon. Rather than being bimodal
(with difficult and easy choices), conflict appears to exist across a
spectrum, with a corresponding spectrum of mouse trajectories.
We next demonstrated that conflict, as measured by mouse

tracking, is highly predictive of participants’ risk preferences out
of sample, with conflict predicting loss aversion and diminishing
marginal utility, at the single-trial level. Conflict was also pre-
dictive of subsequent choices (reported in the SI Appendix).
Notably, conflict was still highly informative even when choice
outcomes did not differ among participants. We additionally
showed the predictive strength of mouse tracking over and above
RT: for both single-trial and multitrial contexts, mouse tracking
provided stronger and more precise estimates of participants’
risk preferences. Finally, we showed that manipulations of risk
preferences shifted the amount of conflict when making choices:
individuals adopting broad bracketing were less conflicted when
selecting gambles and more conflicted when rejecting gambles
compared with individuals adopting a narrow bracketing. This
builds on prior work showing differences in arousal as a function
of bracketing (53) and suggests that bracketing changes partici-
pants’ subjective experiences of these choices. Taken together,
our findings highlight the importance and utility of using dy-
namic assessments of choice, rather than choice outcomes alone,
to understand preferences.

Implications and Future Directions.Although conflict is often either
implicitly or explicitly a central component of our theoretical
understanding (not to mention our subjective experience) of
decision-making (6), conflict itself is often overlooked in em-
pirical investigations, mostly due to a lack of effective mea-
surement tools (for some notable exceptions, see refs. 56–61).
Our work significantly advances an emerging body of research
suggesting that mouse tracking is a sensitive metric to capture
the onset, magnitude, and evolution of conflict within decision-
making (reviewed in ref. 11). Our work further demonstrates the
relative advantages of mouse tracking over the most prominent
measure of conflict, RT. Specifically, mouse tracking is both
nonredundant with RT (as they are only moderately correlated,
r = 0.32 across studies, and our results hold when controlling for
RT) and more predictive of underlying risk preferences. To-
gether, these results suggest mouse tracking may be better suited
for studying conflict than RT. Mouse tracking’s advantage may
be due to nonconflict factors such as nondecision time and re-
sponse caution (that are known to affect RT) having relatively
less impact on mouse trajectories. Future research should in-
vestigate this possibility. Future research should also address
whether the advantages of mouse tracking over RT generalize
beyond economic decision-making. Overall, by harnessing motor
conflict during choice, mouse tracking offers a window into the
dynamic push and pull between competing alternatives.
Our results also highlight an interesting discrepancy: mouse

tracking particularly outperforms RT for predicting loss aversion
compared to diminishing marginal utility. One possible explanation

is that loss aversion (captured by the mixed gambles) constitutes
a stronger, more variable force on participants’ choices than
diminishing marginal utility. Indeed, past work using similar
tasks has largely focused on loss aversion rather than diminishing
marginal utility (53, 59).
By drawing on sequential sampling models to define and un-

derstand conflict, our work adds clarity to what conflict is in
terms of how and when it emerges, changes, and resolves. In this
framework, the amount of conflict is inversely related to the rate
of evidence accumulation toward the better option, which itself is
a function of the difference in subjective value between the two
options. Mouse tracking seems to provide a direct glimpse at this
process. Although a detailed discussion and analysis of the re-
lation between mouse-tracking metrics and sequential sampling
model parameters is beyond the scope of this paper, we believe
this to be a highly fruitful avenue for future research (16). Ad-
ditionally, future research should investigate the connection
between drift diffusion model parameters and other metrics of
mouse tracking, such as incorporation times (16).
The present work also deepens our understanding of the na-

ture of conflict. In particular, researchers and practitioners alike
sometimes discuss conflict as if it were either present or absent
(i.e., a binary variable). Our work demonstrates that conflict
exists on a continuum, with the degree of conflict being highly
sensitive to the decision setting. The present work thus suggests
that the current understanding of conflict may be too simplistic,
and that the ability to more precisely quantify conflict via mouse
tracking will allow for developing and testing more comprehen-
sive models of conflict. As an example, recent research has sug-
gested conflict can occur nonconsciously (58, 61, 62), but it
remains unclear how much conflict must be present for individuals
to subjectively experience the choice as difficult. Additionally,
conflict is a central component of most models of cognitive con-
trol (e.g., refs. 63, 64), and the ability to precisely quantify conflict
empowers researchers to test more nuanced theoretical models of
control. We invite future research using mouse tracking to de-
velop more comprehensive understanding of conflict, as well the
cognitive operations for which conflict is crucial.
Our work further indicates that conflict can provide unique

insights into preferences, even when choice is held constant. This
suggests that those interested in predicting behavior should look
not solely to choice outcomes, but also to measures of conflict
such as mouse tracking. Future work integrating metrics of
conflict into parameter estimates of risk preferences may provide
more stable, predictive estimates compared to those solely based
on choices. Similarly, those looking to nudge individuals toward
a certain type of choice would likely find their efforts more ef-
fective for those who are conflicted compared with those who are
not (65). Researchers and practitioners alike could use metrics of
mouse movements to gauge conflict, for example, in online set-
tings, to better understand individuals’ preferences and to more
effectively target interventions. The metric of conflict need not
be restricted to mouse movements; those interested in predicting
or persuading behavior could explore other conflict measures
(e.g., scrolling, times visiting and departing a product page
before purchase).
Finally, it is important to recognize some limitations of mouse

tracking. First, although the present study has demonstrated the
sensitivity and predictive utility of mouse tracking in a highly con-
trolled experimental setup (i.e., mouse cursors always starting at the
same location, with response options appearing simultaneously in
the corners of the screen), real-world digital interactions do not
always offer this same degree of control. It remains to be seen
whether mouse tracking retains its edge over RT in the more
noisy, real-world applications of online decision-making. Fur-
ther, with the rise of mobile devices as the primary way many
people access the internet, future research should investigate
motor indicators of conflict that do not require a mouse (e.g.,
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scrolling up and down a page). Additionally, oftentimes indi-
viduals are choosing between several options, not just two.
Although mouse tracking can be extended to decisions with
more than two choices (66–68), interpretation of such setups
are less straightforward. We invite future research demon-
strating the robustness (or lack thereof) of mouse tracking to
real-world decision-making.

Conclusions
Choice is not a discrete event, but rather the output of a dynamic
cognitive process, which is reflected in motor movement. The act
of making a decision requires integrating across different deci-
sion dimensions—often dimensions that are not directly align-
able (69)—before ultimately making a selection. In the case of
choices involving risk, this requires navigating the conflict be-
tween outcome desirability and likelihood, a case in which there
are no objectively correct answers. By using dynamic assessments
of the evolution and resolution of conflict, we can better un-
derstand and predict how people choose under risk.

Methods
All protocols were approved by the Ohio State University (studies 1 and 2) or
Yale University (study 3) institutional review boards, and all participants
provided informed consent. All materials, data, scripts, and preregistrations
are available online via the Open Science Framework at https://osf.io/c7e4x/.
As our analysis strategy has evolved since the beginning of the project, our
ultimate analyses differ somewhat from our preregistrations, and we detail
these discrepancies in the SI Appendix.

Participants. Undergraduate students at a large midwestern university (study
1, n = 148, and study 2, n = 105) participated for partial completion of course
requirements. Study 3 consisted of 407 participants who completed the ex-
periment in exchange for $10 at the behavioral research lab of a north-
eastern university (two participants did not finish and are excluded from
analyses). Across all studies, we excluded participants who elected to gamble
on every trial or pass on every trial. In studies 1 and 2, no participants dis-
played this behavior, and, in study 3, this excluded four participants who
passed on every gamble and two participants who accepted every gamble.

Gambles: Study 1. Participants completed 215 gambles adapted from Sokol-
Hessner and colleagues (53). All gambles pitted a 50/50 gamble (risky)
against some certain outcome. There were two different types of gambles:
mixed gambles and gain-only gambles (SI Appendix, Tables S1–S3, provide a
full list of gambles). For the mixed gambles (165 total), the safe option was
always $0. The risky option always had a 50% chance of gaining some
money for the participant and a 50% chance of losing some money for the
participant. The gain amounts consisted of 11 possible values ($2, $4, $5, $6,
$8, $9, $10, $12, $14, $15, and $16), and the loss amounts were determined
by multiplying the gain amounts by multipliers from −1/4 to −2 in 1/8 in-
crements, yielding 15 different loss amounts per gain amount (e.g., gain $8
vs. lose $4). For the gain-only gambles (50 total), the safe option always
offered the participant a certain gain (e.g., $5) pitted against a gamble in
which, 50% of the time, the participant would gain more money (e.g., $10),
and, 50% of the time, they would receive nothing ($0).

Gambles: Studies 2 and 3. Study 2 was identical to study 1 except the method
of calculating the amounts in the mixed gambles changed slightly. Specifi-
cally, to keep the expected value (EV) of the gamble uniformly distributed, we
calculated the loss amounts to achieve a specific EV of the gamble. For each
gain amount, we calculated loss amounts for which taking the gamble would
yield an EV of −5 to +5 in 0.5 increments. We further removed any gambles
in which the loss amount was greater than 0 (e.g., an EV of +5 with a gain
amount of +2 would require a “loss” amount of +8), as well as the

corresponding gambles with negative EV (e.g., the −5 EV was removed if the
+5 EV was not valid), thus keeping EV uniformly distributed across the trials.
The gain-only trials remained unchanged. Study 3 used identical gambles to
study 2. Further, study 2 used a modified lottery paradigm, such that partic-
ipants were (truthfully) told that some participants would be chosen at ran-
dom to have one gamble chosen at random to be played out with real money.

Mouse Tracking Setup and Procedure. Fig. 2 shows the flow of a single trial for
both the mixed and gain-only gambles. Each trial started with a screen with
a button labeled “START” at the bottom center and two response buttons
labeled “GAMBLE” and either “PASS” (mixed gambles) or “CERTAIN”
(gain-only gambles) in the upper left and right sides of the screen. Response
button locations were constant for each participant, but were counter-
balanced across participants. Once participants pressed the start button, the
“gamble” and “certain” information appeared on the screen just above
where the start button was located. For the mixed gambles, this included the
amount they would gain from the gamble if it were successful and the
amount that they would lose if it were unsuccessful (participants were in-
formed that passing would result in $0 for certain). For the gain-only
gambles, this included the amount they would gain if the gamble were
successful and the amount they could receive for certain (participants were
informed that unsuccessful gambles would result in $0). Participants then
moved their mouse to the upper-left or upper-right corner of the screen to
make their selection. Upon selection, the gamble information would dis-
appear and the start button would reappear.

Participants were instructed to begin moving their mouse as soon as the
options appeared on the screen, and, if they did not start moving their mouse
within 450ms on a given trial, theywere given a reminder dialogue box at the
end of the trial. Participants first completed all 165 mixed gambles before
completing the 50 gain-only gambles. Each set of gambles started with 3
practice trials. All studies were implemented using mouse tracker (70).

Manipulation of Risk Preferences. As we were also interested in how conflict
would respond to manipulations of risk preferences, in study 3, we used a
bracketing manipulation taken from Sokol-Hessner and colleagues (53) to
make participants either more loss-averse (narrow bracketing, i.e., considering
every trial in a vacuum) or less loss-averse (broad bracketing, i.e., considering
every trial as one of many). Full manipulation text is provided in the SI
Appendix. We note that our replication is not direct: Sokol-Hessner and
colleagues (53) used a within-subjects manipulation, whereas we use a between-
subjects manipulation.

Data Preparation and Cleaning. Following established procedures for cleaning
mouse trajectories (8), we first time-normalize the trajectories, yielding
101 x–y coordinates per trajectory, which were then rescaled to always
terminate in the right-hand response location. Following this, we removed
trajectories that were greater than 3 SDs from the mean on AUC, RT, and
time to initial mouse movement. This excluded 4%, 4%, and 3% of total
trials in studies 1 to 3, respectively. For each trajectory, we then computed
the AUC, calculated by quantifying the area between the actual trajectory
and a straight trajectory (Figs. 1 and 2).

Prospect Theory Parameters. For each participant, we computed prospect
theory parameters for loss aversion (λ) and diminishing marginal utility (ρ)
using each of participants’ 215 decisions via a Bayesian hierarchical frame-
work, implemented in the hBayesDM package (55). Further details on pa-
rameter estimation and summaries are given in SI Appendix, Table S4 and
Figs. S1 and S2.

Data Availability. Participant mouse movements and choices data have been
deposited to the Open Science Framework (https://osf.io/c7e4x/).
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